Study of the Bipyramidal Site in Magnetoplumbite-like Compounds, $SrM_{12}O_{19}$ (M = AI, Fe, Ga)

K. KIMURA, M. OHGAKI, K. TANAKA, H. MORIKAWA, and F. MARUMO

Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori, Yokohama 227, Japan

Received September 6, 1989; in revised form March 26, 1990

Structures of magnetoplumbite-type crystals $SrM_{12}O_{19}$ (M = AI, Fe, Ga) have been refined by the single-crystal X-ray diffraction method. The space group is $P6_3/mmc$ with Z = 2. The cell dimensions are a = 5.5666(2) and c = 22.0018(8) Å for $SrA1_{12}O_{19}$, a = 5.8836(1) and c = 23.0376(9) Å for $SrFe_{12}O_{19}$, and a = 5.7929(1) and c = 22.8123(7) Å for $SrGa_{12}O_{19}$ at 22°C. Four structural models were tested with respect to the states of M atoms at trigonal bipyramidal sites: central atom and split atom models with and without anharmonic thermal vibrations. The simple split atom model gave lower R_w values than the central atom model with anharmonic thermal vibrations for $SrA1_{12}O_{19}$ and $SrGa_{12}O_{19}$, whereas it gave an R_w value approximately equal to that given by the central atom model with anharmonic vibration for $SrFe_{12}O_{19}$. The present study suggested that the potential around the M atom with trigonal bipyramidal coordination has double minima in all the magnetoplumbite-type crystals at lower temperatures. @ 1990 Academic Press, Inc.

Introduction

The crystal structure of magnetoplumbite $PbFe_{12}O_{19}$ was studied by Adelsköld (1), who revealed that it belongs to the hexagonal space group $P6_3/mmc$. In this structure Fe atoms are distributed over three crystallographically independent octahedral sites, one tetrahedral site, and one trigonal bipyramidal site. Further structure refinements on magnetoplumbite-type compounds (2-8)showed that an ambiguity remained about the exact location of the cation at the trigonal bipyramidal site. Namely, there are two probable models: in one model a five-coordinated cation locates at the 2b site on the mirror plane of trigonal bipyramid (central atom model), and in the other two half-cat-0022-4596/90 \$3.00

ions locate at two equivalent 4e sites displaced from the mirror plane (split atom model). Recently structure refinement was carried out on CaAl₁₂O₁₉ (9) to clarify the exact location of the Al atom in the bipyramidal site, taking anharmonic thermal vibration of the Al atom into account.

This paper describes results of structure refinements on $\text{Sr}M_{12}\text{O}_{19}$ (M = Al, Ga, Fe) carried out to elucidate the precise structural features of the trigonal bipyramidal coordinations in this type of crystal.

Experimental

Preparation of crystals. In the $SrO-Ga_2O_3$ system, $SrGa_{12}O_{19}$ crystals incongruently melt into Ga_2O_3 and a liquid at

Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved. 1550°C, and SrGa₄O₇ crystals incongruently melt into SrGa₁₂O₁₉ and a liquid at 1490°C (10). Therefore, SrGa₁₂O₁₉ crystals were synthesized by the following procedure. Reagent-grade SrCO₃ and Ga₂O₃ were wetmixed to give the composition of SrO \cdot 5.2Ga₂O₃. The mixture was heated in a Pt crucible with a Keramax (lanthanum chromate) furnace up to 1500°C, kept at this temperature for 1 day, cooled to 1200°C with a cooling rate of 3°C/hr, kept at 1200°C for 1 day, again cooled to 1000°C with a cooling rate of 3°C/hr, and then quenched to room temperature.

The phase diagram of the system $SrO-Al_2O_3$ was reported by Massazza (11). However, details have not been yet established in the compositional range near SrAl₁₂O₁₉, since the melting point is rather high. Therefore, SrAl₁₂O₁₉ crystals were synthesized by solid-state reaction. Reagent-grade SrCo₃ and Al₂O₃ were wetmixed to give the composition of $SrAl_{12}O_{19}$, and the mixture was put into an alumina crucible and calcined at 1400°C for 1 day in the Keramax furnace. The product was powdered and pressed into a pellet. The pellet was put into an alumina crucible and heated in the Keramax furnace to 1850°C, kept at 1850°C for 1 day, cooled to 1100°C with a cooling rate of 10°C/hr, and then quenched to room temperature.

Crystals of $\text{SrFe}_{12}\text{O}_{19}$ were synthesized by the flux method after Gambino and Leonhard (12), utilizing Na₂O as the flux. Reagent-grade SrCO_3 , Fe_2O_3 , and Na_2CO_3 were wet-mixed to give the molar ratios of 15:62:23. The mixture was sealed in a Pt tube and heated to 1250°C in a Siliconit (SiC) furnace, kept at 1250°C for 1 day, cooled to 1000°C with a cooling rate of 3°C/hr, and then quenched to room temperature. The Sr $\text{Fe}_{12}\text{O}_{19}$ crystals were separated by using 20 mol% HNO₃ solution. To check dissolution of Na into the crystals, chemical analysis was carried out with an analytical electron microscope. Since the NaK α peak was not

TABLE I

	SrAl ₁₂ O ₁₉	SrGa ₁₂ O ₁₉	$SrFe_{12}O_{19}$
Space group	P6,/mmc	P6 ₃ /mmc	$P6_1/mmc$
Z	2	2	2
Cell dimensions			
<i>a</i> (Å)	5.5666(2)	5.7929(1)	5.8836(1)
c(Å)	22.0018(8)	22.8123(7)	23.0376(9)
$D_r(g/cm^3)$	4.03	6.16	5.11
μ for MoK α (cm ⁻¹)	58.4	295.0	165.7

detected, the crystals were considered to be free from Na.

Intensity collection. The space group was confirmed to be $P6_3/mmc$ with Weissenberg photographs on all the crystals. The cell dimensions were determined by the leastsquares procedure from 2θ values of reflections obtained on a four-circle diffractometer (Rigaku AFC-5UD) in the range $70^{\circ} \leq 2\theta \leq 80^{\circ}$, where peaks of $K\alpha_1$ and $K\alpha_2$ are separately recorded. The obtained values are given in Table I. The numbers of 2θ values used for this purpose were 34, 96, and 107 in SrAl₁₂O₁₉, SrFe₁₂O₁₉, and Sr Ga₁₂O₁₉, respectively.

Hexagonal, platy crystals were used in all the intensity measurements. The sizes of the specimens are shown in Table II together with other experimental conditions. Intensities were measured on the four-circle diffractometer with MoK α radiation ($\lambda = 0.71069$ Å) monochromated with pyrolytic graphite at 22°C. Strong reflections in the lower angle range were measured in the full reciprocal space for corrections of anisotropic extinctions. The reflections satisfying the condition $|F_0| \ge 3\sigma$ ($|F_0|$) were used in the subsequent calculations. The observed intensities were corrected for Lorentz polarization and absorption factors. Absorption corrections were carried out by taking the crystal shapes into consideration. The numbers of reflections used are 1449, 1883, and 2257 in SrAl₁₂O₁₉, SrFe₁₂O₁₉, and SrGa₁₂O₁₉, respectively, among which 189, 102, and 222 are

	SrAl ₁₂ O ₁₉	SrGa ₁₂ O ₁₉	$SrFe_{12}O_{19}$
Crystal shape	Hexagonal plate	Hexagonal plate	Hexagonal plate
Crystal size (mm)			
Edge length	0.06	0.08	0.08
Thickness	0.04	0.06	0.04
X-ray source	ΜοΚα	ΜοΚα	ΜοΚα
Monochromator	Graphite	Graphite	Graphite
2θ maximum (°)	120	150	120
Range of h, k, l	$0 \leq h, k \leq 13$	$0 \leq h, k \leq 15$	$0 \leq h, k \leq 14$
-	$0 \leq l \leq 53$	$0 \leq l \leq 62$	$0 \leq l \leq 56$
Scan mode			
$2\theta < 60^{\circ}$	ωscan	ω scan	ω scan
$60^{\circ} \leq 2\theta$	$\omega - 2\theta \operatorname{scan}$	$\omega - 2\theta \operatorname{scan}$	$\omega - 2\theta \operatorname{scan}$
Scan width (°)	$1.0 + 0.5 \tan \theta$	$1.0 + 0.5 \tan \theta$	$1.3 + 0.5 \tan \theta$
Scan speed in θ (min ⁻¹)	2°	2°	2°
Maximum repetition of scans	3	3	3
No. of measured reflections	4436	5594	4213
No. of observed reflections	2553	3877	2774
No. of reflections with			
$ F_0 \ge 3\sigma \ (F_0)$	1449	2257	1883
No. of independent reflections	540	1121	944
No. of reflections used for anisotropic			
extinction correction	189	222	102

TABLE II Experimental Conditions

those measured for determination of anisotropic extinction parameters.

Structure Refinement

Atomic scattering factors for Al³⁺, Fe³⁺, Ga³⁺, and Sr²⁺ ions and dispersion correction factors were taken from "International Tables for X-ray Crystallography'' (13). The scattering factor given by Tokonami (14) was used for O²⁻ions. The structures were refined with a modified version of the fullmatrix least-squares program LINKT85, which has functions for extinction correction after Becker and Coppens (15) and for anharmonic thermal parameter refinement with the procedure by Tanaka and Marumo (16). The refinements were carried out on the central atom and split atom models with respect to the cations at the trigonal bipyramidal sites, starting from the atomic parameters given for CaAl₁₂O₁₉ by Utsunomiya et al. (9). Unit weights were given to all the reflections.

First, refinements were carried out on the central atom model. The least-squares calculations assuming an anisotropic extinction effect of type II (15) with a Gaussian distribution gave reasonably small R and R_w values in SrAl₁₂O₁₉ and SrGa₁₂O₁₉, while those assuming an anisotropic extinction effect of type I diverged. Therefore, further refinements were continued on the assumption of the type II extinction effect on these crystals. On the other hand, the situation was reversed in SrFe₁₂O₁₉, and the refinements were performed by applying the type I extinction corrections. The final R and R_w values are given in Table III.

Next, the refinements were carried out on the split atom model. The least-squares calculations on this model gave R and R_w values a little lower than those in SrAl₁₂O₁₉ and SrGa₁₂O₁₉, whereas the final R and R_w

	SrAl ₁₂ O ₁₉	SrGa ₁₂ O ₁₉	SrFe ₁₂ O ₁₉
Central atom model		·····	· · · · · · · · · · · · · · · · · · ·
R	0.0340	0.0347	0.0286
R _w	0.0364	0.0364	0.0266
U_{11}	0.0017	0.0028	0.0033
U_{33}	0.0695	0.0493	0.0281
Height of the positive			
peaks near $M(2)$	1.1	4.3	0.6
The site of the peak	0, 0, 0.27	0, 0, 0.260	0, 0, 0.26
Split atom model			
R	0.0331	0.0324	0.0285
R _w	0.0353	0.0352	0.0265
U_{11}	0.0024	0.0031	0.0034
U_{33}	0.0094	0.0135	0.0130
Height of the positive			
peaks near M(2)	0.5	0.1	0 ^b
The site of the peak	0, 0, 0.27	0, 0, 0.265	0, 0, 0.26
Central atom model ^a			
R	0.0331	0.0326	0.0284
R _w	0.0354	0.0353	0.0264
U_{11}	0.0020	0.0030	0.0036
U_{33}	0.0255	0.0352	0.0261
Height of the positive			
peaks near $M(2)$	0.6	0.8	0.1 ^b
The site of the peak	0, 0, 0.27	0, 0, 0.265	0, 0, 0.26
Split atom model ^a			
R	0.0331	0.0323	0.0284
R _w	0.0353	0.0352	0.0264
U_{11}	0.0024	0.0033	0.0035
U_{33}	0.0104	0.0137	0.0130
Height of the positive			
peaks near $M(2)$	0.4	0.0	0.1 ^b
The site of the peak	0, 0, 0.27	0, 0, 0.260	0, 0, 0.26

TABLE III $R, U_{11}(Å^2)$, and $U_{33}(Å^2)$ Values of M(2) Atoms and Peak Heights (e/A^3) around M(2) Atoms on the Difference Fourier Maps Obtained by Various Models

^a Anharmonic thermal vibration for M(2) atom.

^b There is no peak around (0, 0, 0.26). The value is the residual density at (0, 0, 0.26).

values were virtually identical for the two models in $SrFe_{12}O_{19}$. The final atomic parameters of the split atom model are given in Table IV. Those of the central atom model are also given in the table for $SrFe_{12}O_{19}$.

The refinement on $\text{SrGa}_{12}\text{O}_{19}$ with the central atom model gave a U_{33} value of 0.0493 Å² for the Ga(2) atom, which is extremely

large compared with other thermal parameters. The difference Fourier map of this model showed a negative peak with a depth of $-3.7 e/Å^3$ at the Ga(2) site and two positive peaks with heights of $4.3 e/Å^3$ at 0.2 Åapart from the Ga(2) site along the c axis. On the other hand, the refinements allotting the Ga(2) atom at the 4e sites statistically

KIMURA	E

			· · ·			·		
Atom	Position	x	у	z	U ₁₁	U ₂₂	U ₃₃	U ₂₃
Sr	2 <i>d</i>	23	1/3		.57(2)		57(3)	0
Al(1)	2 <i>a</i>	0	0	0	41(5)	U_{11}	24(8)	0
Al(2)	4 <i>e</i>	0	0	0.2596(1)	24(6)	U_{11}	94(20)	0
Al(3)	4f	$\frac{1}{3}$	213	0.02803(7)	35(3)	U_{11}	39(5)	0
Al(4)	4f	13	23	0.19050(6)	42(3)	U_{11}	37(5)	0
Al(5)	12k	0.1684(1)	0.3368(2)	-0.10834(3)	32(2)	33(3)	46(3)	-6(4)
O(1)	4 <i>e</i>	0	0	0.1483(1)	34(7)	U_{11}	20(12)	0
O(2)	4f	2 <u>3</u>	$\frac{1}{3}$	0.0544(2)	42(7)	U_{11}	59(11)	0
O(3)	6 <i>h</i>	0.1817(3)	0.3634(7)	$\frac{1}{4}$	49(8)	19(12)	52(9)	0
O(4)	12 <i>k</i>	0.1548(2)	0.3096(5)	0.05166(8)	37(5)	25(8)	47(6)	-5(6)
O(5)	12 <i>k</i>	0.5022(3)	1.0044(5)	0.14809(1)	40(5)	41(7)	63(7)	14(7)
Sr	2 <i>d</i>	23	13	$\frac{1}{4}$	97(3)	U_{11}	85(3)	0
Ga(1)	2a	0	0	0	41(2)	U_{11}	40(3)	0
Ga(2)	4 <i>e</i>	0	0	0.25724(8)	31(2)	U_{11}	135(9)	0
Ga(3)	4f	$\frac{1}{3}$	23	0.02724(3)	36(1)	U_{11}	47(2)	0
Ga(4)	4f	$\frac{1}{3}$	23	0.18993(3)	42(1)	U_{11}	42(2)	0
Ga(5)	12k	0.16833(5)	0.33666(10)	-0.10934(1)	40(1)	32(1)	59(1)	4(1)
O(1)	4 <i>e</i>	0	0	0.1495(2)	32(8)	U_{11}	63(13)	0
O(2)	4f	<u>2</u> 3	1	0.0553(2)	41(8)	U_{11}	38(11)	0
O(3)	6 <i>h</i>	0.1818(4)	0.3636(8)	1 4	88(11)	19(13)	69(11)	0
O(4)	12 <i>k</i>	0.1555(3)	0.3111(6)	0.0525(1)	50(6)	28(9)	67(7)	-8(6)
O(5)	12 <i>k</i>	0.5045(4)	1.0089(8)	0.1500(1)	46(5)	71(9)	71(7)	11(9)
Sr	2 <i>d</i>	23	13	1 4	122(2)	U_{11}	96(3)	0
Fe(1)	2a	0	0	0	49(2)	$U_{11}^{(1)}$	44(3)	0
Fe(2)	$4e^a$	0	0	0.2549(2)	34(2)	U_{11}	130(17)	0
	$2b^b$	0	0	$\frac{1}{4}$	36(2)		261(12)	
Fe(3)	4 <i>f</i>	$\frac{1}{3}$	25	0.02718(2)	40(1)	U_{11}	51(2)	0
Fe(4)	4 <i>f</i>	$\frac{1}{3}$	2 T	0.19091(2)	49(1)	U_{11}	50(2)	0
Fe(5)	12 <i>k</i>	0.16886(4)	0.33772(8)	-0.10917(1)	46(1)	37(1)	65(1)	4(1)
O(1)	$4e^a$	0	0	0.1514(2)	48(6)	U_{11}	82(12)	0
O(2)	4e 1fa	2	1	0.0554(2)	49(0) 50(8)		81(12)	0
0(2)	4 <i>f</i> = 4 <i></i>	3	3	0.0554(2)	39(8)	U_{11}	69(11)	0
O(3)	6 <i>h^a</i> 6 <i>h^b</i>	0.1819(2)	0.3639(6)	1 4	124(8) 126(8)	60(10) 59(10)	68(8)	0
O(4)	12k ^a 12k ^b	0.1564(2)	0.3127(4)	0.05252(7)	49(4)	40(6) 41(6)	66(5)	10(5)
O(5)	12 <i>kª</i> 12 <i>k^b</i>	0.5039(3)	1.0078(5)	0.15093(8) 0.15092(8)	56(4) 55(4)	74(6)	69(5)	28(6) 30(6)

TABLE IV

Positional and Thermal (×10⁴) Parameters for $SrM_{12}O_{19}$ (M = Al, Ga, Fe)

Note. The thermal parameters are of the form: $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2C^{*2} + 2U_{12}hka^*b^* + 2U_{23}klb^*c^* + 2U_{13}hla^*c^*)]$. $2U_{12} = U_{22}$; $2U_{13} = U_{23}$. ^a Split atom model. ^b Central atom model with anharmonic thermal vibration for Fe(2).

FIG. 1. Sections of the difference Fourier maps for $SrGa_{12}O_{19}$ with the plane x = 0 containing Ga(2) atoms at (0, 0, 0.25) after refinements with (a) the central atom model, (b) the split atom model, (c) the central atom model with anharmonic thermal vibration of the Ga(2) atom, and (d) the split atom model with anharmonic thermal vibration of the Ga(2) atom. Contours are at intervals of $0.5 e/Å^3$. Positive, negative, and zero contours are in solid, broken, and dashed-dotted lines, respectively. O(1) atoms locate at (0, 0, 0.15) and (0, 0, 0.35).

(split atom model) reduced the U_{33} value of the atom to 0.0135 Å², although the value was still larger than those of other atoms. The difference Fourier map gave quite small residual densities for this model. The negative peak at the Ga(2) site reduced the depth to 0.0 $e/Å^3$, and the two positive peaks reduced the heights to 0.1 $e/Å^3$ and shifted their centers to positions 0.4 Å apart from the Ga(2) site along the c axis.

The larger U_{33} value of Ga(2) and the residual densities around this atom may be ascribed to an anharmonic thermal vibration of the atom. Refinement was, therefore, carried out by introducing anharmonic terms to the thermal parameters of Ga(2) in the central atom model. The site symmetry of Ga(2) is $\overline{6m2}$ in this model, and anharmonic terms up to the fourth order were taken into account (16). The number of parameters increased is six compared with that of the harmonic model. The final R and R_w values were reduced to 0.033 and 0.035 with this refinement, respectively. The difference Fourier map showed a negative peak with a depth of $-1.3 e/Å^3$ at the Ga(2) site and two positive peaks with heights of 0.8 $e/Å^3$ at 0.2 Å apart from Ga(2) along the c axis after this refinement.

The refinement of the split atom model with the anharmonic thermal parameters was further carried out. The site symmetry of Ga(2) is 3m in this model, and anharmonic terms up to the fourth order were also taken into consideration. The number of parameters increased is nine compared with that of the harmonic model. The final R and R_w values were 0.0323 and 0.0352 in this refinement, respectively. The difference Fourier map showed a negative peak shallower than $-0.1 e/Å^3$ at the Ga(2) site and two positive peaks lower than 0.1 $e/Å^3$ at sites 0.2 Å from Ga(2) along the c axis. The difference Fourier maps of SrGa₁₂O₁₉ after the respective refinements are compared in Fig. 1.

Similar refinements were carried out on $SrAl_{12}O_{19}$ and $SrFe_{12}O_{19}$ crystals. The Final R and R_w values, U_{11} and U_{33} of the M(2) atoms with trigonal bipyramidal coordinations, and the heights of the peaks around the M(2) sites in the difference Fourier maps are given in Table III together with those values of the harmonic models.

Results and Discussion

In magnetoplumbite-type structures, O²⁻ anions are arranged in a form of closest packing together with the larger cations $(Sr^{2+} in the present case)$, having the stacking sequence of A B A B A C B C B C A B A . . . along the c axis. The c period is completed by 10 layers, among which the third and eighth layers in the above sequence contain the larger cations as their constituents. There are 28 octahedral sites surrounded only by anions in a unit cell, 18 of which are occupied by M^{3+} cations. Four M^{3+} cations occupy tetrahedral sites and two M^{3+} occupy the trigonal bipyramidal sites. The arrangement of the cations yields a spinel structure at the part where the stacking is the cubic closest one.

The interatomic distances calculated with the parameters listed in Table IV are given in Table V with their standard deviations. The effective ionic radius (17) decreases in the order Fe^{3+} , Ga^{3+} , and Al^{3+} , and correspondingly the size of the structure framework decreases in the same order. The aver-

TABLE V INTERATOMIC DISTANCE (Å) IN $SrM_{12}O_{19}$ (M = Al, Ga, Fe)

	SrAl ₁₂ O ₁₉	SrGa ₁₂ O ₁₉	SrFe ₁₂ O ₁₉
SrO ₁₂ polyhedron			
$Sr-O(3) \times 6$	2.787(3)	2.900(4)	2.946(3)
$Sr-O(5) \times 6$	2.746(2)	2.803(3)	2.821(2)
$M(1)O_6$ octahedron			
$M(1) - O(4) \times 6$	1.876(2)	1.967(7)	2.001(2)
$M(2)O_5$ trigonal bipyramid			
$M(2) - O(1) \times 1$	2.025(4)	2.128(5)	2.157(4)
$M(2) - O(1)' \times 1$	2.450(4)	2.459(5)	2.384(4)
$Fe(2)-O(1)^a \times 2$			2.272(4)
$M(2)-O(3) \times 3$	1.765(3)	1.831(4)	1.858(3)
$Fe(2)-O(3)^a \times 3$			1.854(3)
M(2) - M(2)'	0.424(4)	0.330(3)	0.227(4)
$O(3) - O(3)'^{b} \times 1$	3.034(4)	3.159(6)	3.211(4)
$M(3)O_4$ tetrahedron			
$M(3) - O(2) \times 1$	1.813(4)	1.901(4)	1.901(4)
$M(3)$ -O(4) \times 3	1.798(2)	1.870(2)	1.896(2)
$M(4)O_6$ octahedron			
$M(4) - O(3) \times 3$	1.963(3)	2.047(3)	2.058(2)
$M(4) - O(5) \times 3$	1.877(2)	1.944(3)	1.963(2)
$M(5)O_6$ octahedron			
$M(5) - O(1) \times 1$	1.847(2)	1.921(2)	1.977(2)
$M(5) - O(2) \times 1$	1.985(2)	2.064(2)	2.085(2)
$M(5)-O(4) \times 2$	1.999(2)	2.082(2)	2.112(2)
$M(5) - O(5) \times 2$	1.813(3)	1.885(3)	1.923(3)

" Central atom model.

^b O-O distance of the oxygen triangle on the mirror plane.

age Sr–O distance also decreases in this order, having the values 2.884, 2.852, and 2.767 Å in $SrFe_{12}O_{19}$, $SrGa_{12}O_{19}$, and $SrAl_{12}O_{19}$, respectively.

The M(2)-O bonds have longer average distances than those expected from the effective ionic radii (17). Namely, the observed values are 1.956, 2.018, and 2.023 Å for the split atom models of $SrAl_{12}O_{19}$, $SrGa_{12}O_{19}$, and $SrFe_{12}O_{19}$, respectively, whereas the sums of effective ionic radii are 1.88, 1.95, and 1.98 Å for fivefold coordinated M^{3+} ions. Among the M–O distances listed in Table V, the M(2)-O(3) distances in the $M(2)O_5$ trigonal bipyramids are shortest and too short for the M-O distances even in the split atom model. The M(2)-O(3) distance becomes still shorter in the central atom model. This fact suggests that the central atom model is implausible.

The O(3)-O(3)' edges of the trigonal bipyramids on the mirror planes have dis-

FIG. 2. Sections of the difference Fourier maps for $SrFe_{12}O_{19}$ with the plane x = 0 containing Fe(2) atoms at (0, 0, 0.25) after refinements with (a) the central atom model, (b) the split atom model, (c) the central atom model with anharmonic thermal vibration of the Fe(2) atom, and (d) the split atom model with anharmonic thermal vibration of the Fe(2) atom. Contours are at intervals of $0.2 e/Å^3$. Positive, negative, and zero contours are in solid, broken, and dashed-dotted lines, respectively. O(1) atoms locate at (0, 0, 0.15) and (0, 0, 0.35).

tances 3.034, 3.159, and 3.211 Å in SrAl₁₂O₁₉, SrGa₁₂O₁₉, and SrFe₁₂O₁₉, respectively. This O(3)-O(3)' separation acts as a potential barrier when the metal atom jumps between the two split atom sites. The Fe(2) atom in SrFe₁₂O₁₉ seems to jump most easily to the other site, since the O(3)-O(3)'separation is the largest among the three compounds. The M(2)-M(2)' separations are 0.227, 0.330, and 0.424 Å in the split atom models of SrFe₁₂O₁₉, SrGa₁₂O₁₉, and SrA112O19, respectively. When the M(2)-M(2)' separation decreases, the difference between the central atom and the split atom models becomes small. Actually the central atom model with anharmonic thermal vibration and the split atom model gave approximately equal R_w values for $SrFe_{12}O_{19}$.

As seen in Table IV, the values of U_{11} and U_{33} for M atoms range from 0.0024 to 0.0065 Å² in the split atom model except U_{33} of the M(2) atom, which ranges from 0.0094 to 0.0135 Å². Namely the thermal ellipsoid of M(2) is extremely elongated along the c axis. The U_{11} and U_{33} values of M(2) obtained in the four refinements are summarized in Table III. The refinements with the simple central atom model gave U_{33} values ranging from 0.0281 to 0.0695 Å², which are much larger than those of other M atoms. The values reduced to 0.0261–0.0352 Å² when the anharmonic thermal vibration was taken into consideration. On the other hand, the

refinements with the split atom model markedly reduced the U_{33} values, although the values are still larger than those of other Matoms.

The heights of residual densities in the difference Fourier maps around the M(2)atoms are also given in Table III. The M(2)atoms lie in deep negative regions after refinements with the central atom model, and pairs of high positive peaks exist on both sides of the atom along the c axes in $SrAl_{12}O_{19}$ and $SrGa_{12}O_{19}$ (Fig. 1). The magnitudes of residual densities are significantly reduced after the refinement with the split atom model or the central atom model with allowance for anharmonic thermal vibration. However, the split atom model gives flatter difference Fourier maps than the central atom model with anharmonic thermal vibrations. Therefore, the split atom model seem to be most plausible among the three structure models in these two crystals.

On the other hand, the central atom model allowing anharmonic thermal vibration of the Fe(2) atom and the split atom model gave approximately equal R_{w} values in the case of $SrFe_{12}O_{19}$. The residual densities are very small for both structure models as seen in Fig. 2. Thus, the present study cannot tell which model is closer to the real structural state in SrFe₁₂O₁₉. Mamalui et al. (18) reported from the evidence of the Mössbauer spectra of $BaFe_{12}O_{19}$ that the Fe atom at the bipyramidal site occupies one of two equivalent positions of the 4e sites statistically (the split atom model) at low temperature below 75 K and that it jumps between the two 4e sites at temperatures higher than 75 K. The result of the present study on $SrFe_{12}O_{19}$ accords well with this description.

The present study as well as Mössbauer measurements (18, 19) suggest that the potential around the M(2) site has double minima in all the magnetoplumbite-type crystals at lower temperatures. Therefore, there are two plausible states for the M(2) atoms at room temperature, that is to say, static disorder and dynamic disorder states. In the present study, introduction of anharmonic thermal vibration into the split atom model did not improve the R_w value significantly and no definite conclusion was obtained on the states of M(2) atoms. To settle this problem, analysis of diffuse scattering at various temperatures is required.

References

- V. ADELSKÖLD, Ark. Kemí Mineral. Geol. Ser. A 12, 1 (1938).
- 2. A. J. LINDOP, C. MATTHEWS, AND D. W. GOOD-WIN, Acta Crystallogr. B 31, 2940 (1975).
- 3. M. GASPERIN, M. C. SAINE, A. KAHN, F. LA-VILLE, AND A. M. LEJIUS, J. Solid State Chem. 54, 61 (1984).
- N. IYI, Z. INOUE, S. TAKEKAWA, AND S. KIMURA, J. Solid State Chem. 54, 70 (1984).
- N. IYI, Z. INOUE, AND S. KIMURA, J. Solid State Chem. 54, 123 (1984).
- X. OBRADORS, A. COLLOMB, M. PERNET, D. SAMARAS, AND J. C. JOUBERT, J. Solid State Chem. 56, 171 (1985).
- A. KAHN AND J. THERY, J. Solid State Chem. 64, 102 (1986).
- X. OBRADORS, X. SOLANS, A. COLLOMB, D. SAMARAS, J. RODRIGUEZ, M. PERNET, AND M. FONT-ALTABA, J. Solid State Chem. 72, 218 (1988).
- A. UTSUNOMIYA, K. TANAKA, H. MORIKAWA, F. MARUMO, AND H. KOJIMA, J. Solid State Chem. 75, 197 (1988).
- V. P. KOBZAREVA, L. M. KOVBA, L. M. LOPATO, L. N. LYKOVA, AND A. V. SCHEVCHENKO, Russ. J. Inorg. Chem. Engl. Transl. 21, 903 (1976).
- 11. F. MASSAZZA, Chem. Ind. (Milan) 41, 114 (1959).
- 12. R. J. GAMBINO AND F. LEONHARD, J. Amer. Ceram. Soc. 44, 221 (1961).
- "International Tables for X-ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974).
- 14. M. TOKONAMI, Acta Crystallogr. 19, 486 (1965).
- P. J. BECKER AND P. COPPENS, Acta Crystallogr. A 31, 417 (1975).
- 16. K. TANAKA AND F. MARUMO, Acta Crystallogr. A 39, 631 (1983).
- 17. R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).
- Y. A. MAMALUI, U. P. ROMANOV, AND K. M. MATSIEVSKII, Sov. Phys. Solid State Engl. Transl. 21, 117 (1979).
- E. KREBER, V. GONSER, A. TRAUTWEIN, AND F. HARRIS, J. Phys. Chem. Solids 36, 263 (1975).